INDIAN SCHOOL AL WADI AL KABIR
Dept. of Mathematics 2023 - 2024
Class X - Real Numbers (WS1)

1	What is the sum of exponents of prime factors in the prime-factorization of 196
2	Find the HCF and the LCM of 12, 21, 15.
3	Find the LCM of smallest two-digit composite number and smallest composite number.
4	HCF of two numbers is 27 and their LCM is 162 . If one of the numbers is 54 , then what is the other number?
5	Find HCF of 144 and 198.
6	Express 225 in prime factorization.
7	If two positive integers a and b are written as $a=x^{3} y^{2}$ and $b=x y^{3}$, where x, y are prime numbers, then find $\mathrm{HCF}(a, b)$.
8	The L.C.M. of x and 18 is 36 . The H.C.F. of x and 18 is 2 . What is the number x ?
9	What is the HCF of smallest primer number and the smallest composite number?
10	Calculate the HCF of $3^{3} \times 5$ and $3^{2} \times 5^{2}$.
11	If HCF $(a, b)=12$ and $a \times b=1,800$, then find LCM (a, b)
12	Find the least number that is divisible by all numbers between 1 and 10 (both inclusive).
13	Find HCF and LCM of 404 and 96 and verify that HCF x LCM = Product of the two given numbers
14	Given that $\operatorname{HCF}(306,1314)=18$. Find $\operatorname{LCM}(306,1314)$
15	An army contingent of 612 members is to march behind an army band of 48 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

16	Write the smallest number which is divisible by both 306 and 657.
17	144 cartons of Coke cans and 90 cartons of Pepsi cans are to be stacked in a canteen. If each stack is of the same height and if it equal contain cartons of the same drink, what would be the greatest number of cartons each stack would have? 18 Three bells toll at intervals of 9, 12, 15 minutes respectively. If they start tolling together, after what time will they next toll together? 20
Find HCF and LCM of 378,180 and 420 by prime factorization method. Is HCF \times LCM of these numbers equal to the product of the given three numbers? of the product is a rational number	

Answers

1	4
4	81
7	Xy^{2}
10	45
14	22338
17	18

2	420
5	18
8	4
11	150
15	12
18	180 minutes

3	20
6	$3^{2} \times 5^{2}$
9	2
12	2520
16	22338
20	3

